Exergy and sensitivity evaluation of the production process of chitosan microbeads modified with green TiO2 nanoparticles

Evaluación exergética y de sensibilidad del proceso de producción de microperlas de quitosano modificadas con nanopartículas verdes de TiO2

Main Article Content

Tamy Carolina Herrera-Rodríguez
Ángel Darío González-Delgado

Abstract

Chitosan is a biopolymer from the exoskeletons of crustaceans, insect wings or cell walls of fungi, which is emerging as raw material for various applications in medicine, the food industry, cosmetics, water treatment and environmental applications. In addition, this alternative is presented as a solution to the problem of inadequate disposal of marine food waste, it is a continuous problem throughout the coastal areas that generates an unpleasant smell apart from disadvantaging tourism. An exergy analysis was carried out with the objective of identifying the main exergy sinks in the process through the use of the first and second law of thermodynamics; To this end, the industrial simulation of the production of chitosan microbeads modified with TiO2 was developed by means of the software Aspen plus 8.8, in which the physical exergies of the currents were quantified. The quantification of the exergy allowed us to recognize centrifugation as the stage with the greatest irreversibilities, as well as the overall efficiency of the process, which was 0.0439%. Through the sensitivity analysis, the behavior of the process was evaluated under variable changes. Finally, improvements are proposed that favor the process and improve its efficiency.


Article Details

References (SEE)

Z. Mármol, G. Páez, M. Rincón et al., “Quitina y Quitosano polímeros amigables. Una revisión de sus aplicaciones”, Rev. Tecn. Cien. URU, pp. 53-58, 2011. Disponible en https://revistas.fondoeditorial.uru.edu/index.php/tecnocientificauru/article/view/456

R. Kalaivani, M. Maruthupandy, T. Muneeswaran et al., “Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications”, Front. in Lab. Med., vol. 2, n.° 1, pp. 30-35, 2018. Disponible en https://doi.org/10.1016/j.flm.2018.04.002

R. Sulthan, A. Reghunadhan, y S. Sambhudevan, “A new era of chitin synthesis and dissolution using deep eutectic solvents- comparison with ionic liquids”, J. of Mol. Liq., vol. 380, p. 121794, 2023. Disponible en https://doi.org/10.1016/j.molliq.2023.121794

A. González-Delgado, K. Moreno, y J. Martínez, Biorrefinación sostenible del camarón: desarrollos desde la Ingeniería de Procesos Asistida por Computador, Corporación Universitaria Minuto de Dios (Uniminuto), 2022. Disponible en https://doi.org/10.26620/uniminuto/978-958-763-558-4

N. De la Paz, M. Fernández, O. López et al., “Optimización del proceso de obtención de quitosano derivado de la quitina de langosta”, Rev. Ibero. Pol., vol. 13, pp. 103-116, 2012. Disponible en https://reviberpol.org/wp-content/uploads/2019/07/2012-paz.pdf

J. Nakamatsu, “La quitosana”, Rev. de Quím. PUCP, vol. 26, pp. 10-12, 2012. Disponible en https://revistas.pucp.edu.pe/index.php/quimica/article/view/6421

A. Haider, R. AL–Anbari, G. Kadhim et al., “Exploring potential Environmental applications of TiO2 Nanoparticles”, E. Pro., vol. 119, pp. 332-345, 2017. Disponible en https://doi.org/10.1016/j.egypro.2017.07.117

M. Askari, Z. Tavakoli Banizi, M. Seifi et al., “Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite”, Optik – Int. Jour. L. and Elec. Opt., vol. 149, pp. 447-454, 2017. Disponible en https://doi.org/10.1016/j.ijleo.2017.09.078

A. Dicks y D. Loyd, Integrating Green and Sustainable Chemistry Principles into Education, Elsevier, 2019. Disponible en https://doi.org/10.1016/C2018-0-01501-7

M. Nasrollahzadeh, Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications, Elsevier, 2021 https://doi.org/10.1016/C2018-0-05268-8

T. Rahmawati, T. Butburee, W. Sangkhun et al., “Green synthesis of Ag-TiO2 nanoparticles using turmeric extract and its enhanced photocatalytic activity under visible light”, Coll. and Sur. A: Phy. and Eng. Asp., vol. 665, p. 131206, 2023. Disponible en https://doi.org/10.1016/j.colsurfa.2023.131206

S. Meramo, A. Herrera-Barros, y Á. González-Delgado, “Evaluation of large-scale production of chitosan microbeads modified with nanoparticles based on exergy analysis”, En., vol. 12, n.° 7, p. 1200, 2019. Disponible en https://doi.org/10.3390/en12071200

N. Aguilar y A. D. González-Delgado, “Análisis exergético de un proceso industrial para la remoción de hidrocarburos aromáticos policíclicos de agua de mar mediante microperlas de quitosano modificadas”, Ing. y Comp., vol. 24, n.° 2, p. e2111113, 2022. Disponible en https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11113

F. López, S. Meramo, L. Ricardez et al., “Insights from an exergy analysis of a green chemistry chitosan biorefinery”, Chem. Eng. Res. and Des., vol. 194, pp. 666-677, 2023, https://doi.org/10.1016/j.cherd.2023.04.038

S. Hamdy, F. Moser, T. Morosuk et al., “Exergy-based and economic evaluation of liquefaction processes for cryogenics energy storage”, En., vol. 12, n.° 3, p. 493, 2019. Disponible en https://doi.org/10.3390/en12030493

S. Meramo-Hurtado. Á. González, L. Rehmann et al., “Comparative analysis of biorefinery designs based on acetone-butanol-ethanol fermentation under exergetic, techno-economic, and sensitivity analyses towards a sustainability perspective”, J. of Cle. Prod., vol. 298, p. 126761, 2021. Disponible en https://doi.org/10.1016/j.jclepro.2021.126761

D. Martínez, A. Puerta, R. Mestre et al., “Exergy-based evaluation of crude palm oil production in North-Colombia”, Aus. J. of B. and App. Sci., pp. 82-88, 2016.

W. Choi, R. Ooka, y M. Shukuya, “Exergy analysis for unsteady-state heat conduction”, Int. J. of H. and Mass Trans., pp. 1124-1142, 2018. Disponible en https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.057

T. Herrera, V. Parejo, y Á. González-Delgado, “Quality of Energy Conservation in an Avocado Oil Extraction Process via Exergy Analysis”, Che. Eng. Trans., vol. 91, pp. 241-246, 2022. Disponible en https://doi.org/10.3303/CET2291041

S. Meramo, H. Bonfante, G. De Ávila-Montiel et al., “Environmental Assessment of a Large-Scale Production of TiO2 Nanoparticles via Green Chemistry”, Chem. Eng. Trans., vol. 70, pp. 1063-1068, 2018. Disponible en https://doi.org/10.3303/CET1870178

M. Elotaiby, A. Elzayat, W. Awad et al., “Physical studies of chitosan/PEG loaded Fe2O3 nanoparticles microbeads as a based biodegradable material for radiation shielding”, Phy. Op., vol. 19, p. 100209, 2024. Disponible en https://doi.org/10.1016/j.physo.2024.100209

A. D. Olivera, M. F. Barreiro, y M. Lopretti, “Microesferas de quitosano como potenciales transportadores de ácidos nucleicos y otros bioactivos”, Rev. Ibero. Pol., vol. 13, 2012. Disponible en https://reviberpol.org/wp-content/uploads/2019/07/2012-olivera.pdf

K. Z. Saborit-Pino, “Micropartículas porosas nanoestructuradas de quitosano acarreadoras de moléculas bioactivas”, Tesis de maestría, Centro de Investigación en Alimentación y Desarrollo, A.C, 2015. Disponible en http://ciad.repositorioinstitucional.mx/jspui/handle/1006/64

A. Romero-Serrano y J. Pereira, “Estado del arte: Quitosano, un biomaterial versátil. Estado del Arte desde su obtención a sus múltiples aplicaciones”, Rev. Ing. UC, vol. 27, n.° 2, pp. 118-135, 2020. Disponible en https://www.redalyc.org/journal/707/70764230002/html/

Y. Peralta, Á. González, y V. Kafarov, “Evaluation of alternatives for microalgae oil extraction based on exergy analysis”, App. E., pp. 226-236, 2013. Disponible en https://doi.org/10.1016/j.apenergy.2012.06.065

Publication Facts

Metric
This article
Peer reviewers 
0
2.4
Days to publication 
0
145

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
0%
33%

Indexed in

Editor & editorial board
profiles
Academic society 
Universidad Ean
Publisher 
Universidad Ean

Citations

Crossref
Scopus
Europe PMC